
Bone diseases are multifaceted and can have a highly deleterious impact on life and society. Moreover, ageing of the population imposes us with increasing numbers of persons suffering from skeletal issues. It is well known that a varying environment (cellular, chemical, mechanical environment) can have substantial effects on bone cells. The goal is to develop a human cell-based, functional, 3D in vitro model of bone. It should allow studying interactions between the various cell types within bone, but also the differences between cells from various (human) donors (healthy vs diseased, young vs aged). To address this, we have developed bioreactors for longitudinal imaging of the mineralized extracellular matrix formation by cells with micro-computed tomography. Computational approaches are used to describe these environments and to predict tissue formation in vitro.