Research Profile
We make use of model predictive control (MPC) theory to deal with constraints and we design MPC algorithms and fast MPC solvers for complex systems (highly nonlinear, hybrid, uncertain or large-scale interconnected systems). We research flexible control Lyapunov functions to enforce stability for real-time controllers. To increase autonomy and reliability of control systems we focus on integration of artificial intelligence (neural networks) with classical and predictive controllers.
Lees meerMeet some of our Researchers
Recent Publications
Our most recent peer reviewed publications